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ABSTRACT

This analysis estimates uncertainty in the NOAA global surface temperature (GST) version 5

(NOAAGlobalTemp v5) product, which consists of sea surface temperature (SST) from the Extended

Reconstructed SST version 5 (ERSSTv5) and land surface air temperature (LSAT) from the Global

Historical Climatology Network monthly version 4 (GHCNm v4). Total uncertainty in SST and LSAT

consists of parametric and reconstruction uncertainties. The parametric uncertainty represents the depen-

dence of SST/LSAT reconstructions on selecting 28 (6) internal parameters of SST (LSAT), and is estimated

by a 1000-member ensemble from 1854 to 2016. The reconstruction uncertainty represents the residual error

of using a limited number of 140 (65) modes for SST (LSAT). Uncertainty is quantified at the global scale as

well as the local grid scale. Uncertainties in SST and LSAT at the local grid scale are larger in the earlier

period (1880s–1910s) and during the two world wars due to sparse observations, then decrease in the modern

period (1950s–2010s) due to increased data coverage. Uncertainties in SST and LSAT at the global scale are

much smaller than those at the local grid scale due to error cancellations by averaging. Uncertainties are

smaller in SST than in LSAT due to smaller SST variabilities. Comparisons show that GST and its uncertainty

in NOAAGlobalTemp v5 are comparable to those in other internationally recognized GST products.

The differences between NOAAGlobalTemp v5 and other GST products are within their uncertainties at the

95% confidence level.

1. Introduction

The analysis of global surface temperature (GST) is

generally based on in situ measurements of land surface

air temperature (LSAT) and sea surface temperature

(SST), although satellite-based SST observations may

also be included (Rayner et al. 2003). LSAT has been

measured by meteorological stations since the late

1600s, and SST has beenmeasured by commercial ships

since the early 1700s and by moored and drifting buoy

floats since the 1970s (Lawrimore et al. 2011; Kennedy

et al. 2011a,b; Freeman et al. 2017). GST is an essen-

tial indicator of climate change that has been used

for climate assessment and monitoring (IPCC 2013;

USGCRP 2017; Blunden et al. 2018).

There are two notable difficulties in the calculation

of GST. First, temperature measurements do not com-

pletely cover Earth’s surface, particularly near the poles

and before the 1950s. Measurement coverage is also

better in the Northern Hemisphere (NH) than the

Southern Hemisphere (SH) over both the land and the

oceans (Menne et al. 2018; Huang et al. 2019). Second,

observations may be biased due to changes in ther-

mometers, measuring methods, conventions, and re-

locations of meteorological stations or changes in the

surrounding environment (Menne and Williams 2009;

Menne et al. 2012; Kent et al. 2017).

To overcome the first difficulty, different methods

have been used to interpolate large-scale variations to

the regions without measurements. These methods in-

clude empirical orthogonal functions (EOFs), empirical
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orthogonal teleconnection functions (EOTs), kriging

or Gaussian regression, and temperature correlations

with neighboring measurements (van den Dool et al.

2000; Rayner et al. 2003; Smith andReynolds 2003, 2004;

Hansen et al. 2010; Cowtan and Way 2014).

To overcome the second difficulty, different schemes

have been used to correct biases in historical measure-

ments. These schemes include the homogenization of

LSAT measurements, the bucket model simulating the

heat loss of seawater sampling used for SST measure-

ments, and the use of nighttime marine air temperature

(NMAT) as a reference for SSTmeasurements (Folland

and Parker 1995; Smith and Reynolds 2003, 2004, 2005;

Lawrimore et al. 2011; Kennedy et al. 2011a,b, 2019;

Huang et al. 2015, 2017).

Using these methods for interpolation and bias cor-

rection, several GST products have been produced and

widely used for global climate assessment and moni-

toring. These products include NOAA global surface

temperature (NOAAGlobalTemp) v4 and v5 (Vose

et al. 2012; Zhang et al. 2019), the global surface tem-

perature v4 (HadCRUT4) generated by the Met Office

Hadley Centre and the Climatic Research Unit (CRU)

at the University of East Anglia (Morice et al. 2012),

Goddard Institute for Space Studies (GISS) Surface

Temperature (GISTEMP; Hansen et al. 2010), Berkley

Earth Surface Temperature (BEST; Rohde et al.

2013a,b), and Japan Meteorological Agency (JMA)

global surface temperature (Ishihara 2006).

The evolution of globally averaged GSTs described in

those studies is qualitatively similar for periods since the

1880s even though different methods are used in data

interpolation and bias correction. For example, all an-

alyses indicated that GST experienced a cooling over

the 1880s–1910s, a warming over the 1910s to 1940s, a

slight cooling over the 1940s to 1970s, and an enhanced

warming over the 1970s to 2010s. Note that in the 1940s

there was a switch in the source of available observa-

tions and a corresponding rapid shift in observational

bias. Quantitatively, there are some differences in trend

magnitude in the above periods among these products,

particularly for the period 1998–2012 (IPCC 2013; Karl

et al. 2015; Fyfe et al. 2016; Lewandowsky et al. 2016;

Medhaug et al. 2017; Rahmstorf et al. 2017), which led to

questions regarding a change, slowdown, or cessation of

the general warming trend observed since the 1970s.

The debates regarding recent GST warming trends are

partly caused by the selection of starting and ending year of

the hiatus (Medhaug et al. 2017).However, the uncertainty

in theGSTproductsmay also impact the significance of the

warming trends. For example, theGSTdifference between

NOAAGlobalTemp v5 and HadCRUT4 is mostly asso-

ciated with differences in SSTs that are associated with the

uncertainty of SST bias correction (Huang et al. 2015).

Therefore, it is important to quantify the GST uncertainty

when a GST product is generated.

The focus of this paper is to estimate the uncer-

tainty in NOAAGlobalTemp v5 and to compare its

uncertainty with other products. Total uncertainty in

NOAAGlobalTemp v5 consists of parametric and re-

construction uncertainties. The reconstruction uncer-

tainty represents the residual errors due to using a

limited number of empirical orthogonal teleconnection

(van den Dool et al. 2000) modes in SST and LSAT

reconstructions, and how well the retained EOTs span

the variations at any given time. The parametric un-

certainty represents the dependence of SST and LSAT

reconstructions on randomly selecting the optional

values of the internal parameters of SST and LSAT.

The rest of the paper is arranged as follows. The

datasets used for uncertainty estimation and comparison

are described in section 2. The methodology and esti-

mation of SST and LSAT uncertainties are described

in sections 3 and 4 respectively. The GST uncertainty

in NOAAGlobalTemp v5 is quantified based on SST

and LSAT uncertainties and compared with the GST

uncertainties in the other products in section 5. A sum-

mary and conclusions are given in section 6.

2. Datasets used for uncertainty estimation and
comparison

a. Data used for uncertainty estimation

The monthly 28 3 28 Optimum Interpolation SST

(OISST) data (Table 1) are used to train SST EOTs

(Table 2, 23rd row) and used as pseudo-observations to

derive SST reconstruction uncertainty (section 3d). The

monthly OISST is derived from the weekly 18 3 18
OISST (wOISST) from 1982 to 2011 (Reynolds et al.

2002), which is consistent with those used in the previous

versions of ERSST (v4 and v3b). To better represent the

interannual variations of SST, different SST data com-

binations are selected to train the EOTs as described in

parameter 23 in Table 2 and appendix A. The weekly

data are first interpolated to the daily data time scale,

and then the daily data on 18 3 18 grids are averaged to

monthly data on 28 3 28 grids. The OISST data are

observation-based estimates that are methodologically

independent of ERSSTv5. Both OISST and ERSSTv5

include in situ data. The OISST includes satellite-

derived data while ERSSTv5 does not.

The monthly 58 3 58 LSAT data, derived from

the European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim;

Table 1, second row) from 1982 to 2011 (Dee et al. 2011),
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are used to train LSAT EOTs. Original resolutions of

ERA-Interim are daily, approximately 0.758 in longi-

tude and latitude, and 60 levels. The air temperature at

the lowest level (2m) over the land is used as LSAT.

ERA-Interim is an observation-based reanalysis forced

by the SST from HadISST1 (Rayner et al. 2003) and the

Operational SST and Sea Ice Analysis (OSTIA) system

(Stark et al. 2007; Donlon et al. 2015) as a low boundary

condition, which is methodologically independent of the

LSAT from NOAAGlobalTemp.

LSATs from coupled model simulations are used

as pseudo-observations to assess reconstruction un-

certainty (section 4d). The model simulations are in-

dependent and provide spatially complete analyses.

These model simulations with different resolutions

are box-averaged to the monthly 58 3 58 grids of

NOAAGlobalTemp and used to estimate the recon-

struction uncertainty. To assure that the estimated

reconstruction uncertainty is not sensitive to the se-

lection of model simulations, three model simulations

are tested (Table 1):

1) Geophysical Fluid Dynamics Laboratory (GFDL)

Earth System Model version 2G (ESM2G; Dunne

et al. 2012). This coupled model has a resolution of

approximately 2.58 in longitude, near 28 in latitude,

and daily from 1861 to 2005.

2) Met Office (UKMO) Hadley Centre Global Envi-

ronmental Model version 2-AO (HadGEM2-AO;

Collins et al. 2008). This coupled model has a res-

olution of 1.98 in longitude, near 1.38 in latitude, and

daily from 1860 to 2005.

3) Second Generation Canadian Earth System Model

(CanESM2; Arora et al. 2011). This coupled model

has a resolution of approximately 2.88 in longitude

and latitude, and daily from 1850 to 2005.

The reconstructionuncertainty derivedusingHadGEM2-

AO is eventually added with the parametric uncertainty

to estimate the total uncertainty of LSAT in section 5b.

b. Data used for comparisons

GST and its uncertainty in HadCRUT4 (Morice et al.

2012), BEST (Rohde et al. 2013a,b), and GISTEMP

(Hansen et al. 2010; Lenssen et al. 2019) are compared

with NOAAGlobalTemp v5. The GST anomaly in

HadCRUT4 is on monthly 58 3 58 grids from 1850 to

2017, which is relative to its climatological mean over

1961–90 and is rescaled here to 1971–2000 for compar-

ison purposes. HadCRUT4 combines LSAT from

CRUTEM4 (Jones et al. 2012) and SST from HadSST3

(Kennedy et al. 2011a,b). In HadCRUT4, the total

uncertainty of local GST consists of uncorrelated and

supplemental uncertainties, and the total uncertainty

of globally averaged GST consists of bias, sampling,

and coverage uncertainties. For comparison purposes,

the spread (one standard deviation or 1s) from the

100-member ensemble of HadCRUT4 is calculated as

an uncertainty measure and compared with that in

NOAAGlobalTemp v5 (section 5c).

The GST anomaly in BEST is on monthly 18 3 18
grids from 1850 to 2017. The anomaly is relative to the

1951–80 climatological mean, which is rescaled to

1971–2000 and then box-averaged to 58 3 58 grids. BEST
uses LSAT from the Global Historical Climatology

Network–monthly (GHCNm) v3 (Lawrimore et al.

2011) and SST from HadSST3 (Kennedy et al. 2011a,b).

The LSAT observations are homogenized using the

‘‘scalpel’’ method and averaged and interpolated using

‘‘Berkeley average’’ and kriging (or Gaussian regres-

sion) algorithms. Overall, the GST in BEST is closest to

HadCRUT4 because the SST component of BEST is the

same as that in HadCRUT4, although their difference is

notable in the recent decade and in the nineteenth

century. The uncertainty of BEST includes observa-

tional biases and undersampling effects.

The GST anomaly in GISTEMP (Hansen et al.

2010) is on monthly 28 3 28 grids from 1880 to 2017.

The anomaly is relative to a climatological mean

over 1951–80, which is rescaled to 1971–2000 then

TABLE 1. Datasets used to assess uncertainties of ERSSTv5, LSAT, and NOAAGlobalTemp reconstructions.

SST products Spatial resolution Temporal resolution Data ingest Analysis method External forcing

wOISST 18 3 18 Weekly In situ SST,

satellite-based SST

Optimum

interpolation

N/A

Global 1982–2013

ERA-Interim 0.758 3 0.758 Daily Various atmospheric

observations

Assimilation SST from HadISST

GFDL-ESM2G 18 3 0.98 Global Daily 1861–2005 N/A Coupled model

simulation

Greenhouse gases, trace

gases, aerosols, ozone,

land use

HadGEM2-AO 18 3 0.88 Global Monthly 1860–2005 N/A Coupled model

simulation

Greenhouse gases, aerosols

CanESM2 2.88 3 2.88 1850–2005 N/A Coupled model

simulation

Greenhouse gases, aerosols,

cloud microphysics
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box-averaged to 58 3 58 grids. GISTEMP combines

LSAT from GHCNm v3 (Lawrimore et al. 2011) with

SST from ERSSTv5 (Huang et al. 2017). Regions with-

out observations over the land are filled by the weighted

average with weights decaying linearly to zero at

1200km. Overall, the GST in GISTEMP is closest to

NOAAGlobalTemp v5 because the SST component of

GISTEMP is the same as that of NOAAGlobalTemp v5.

All uncertainties are quantified and compared using

1s threshold except for the uncertainty interval (1.96s)

for a temperature trend at the 95% confidence.

3. SST and its uncertainty

a. ERSSTv5, its internal 28 parameters and
1000-member ensemble

SSTs in ERSSTv5 are produced on monthly 28 3 28
grids from 1854 to 2017 (Huang et al. 2017) and used

as the oceanic component of NOAAGlobalTemp v5.

ERSSTv5 includes available in situ SST observations

from ships, buoys, and Argo floats. Satellite-based ob-

servations are not included. The ship and buoy SSTs are

from the InternationalComprehensiveOcean–Atmosphere

TABLE 2. ERSSTv5 parameters and their operational and alternative options. In parameter number 23, the ‘‘even years’’ are 1982,

1984, . . . , 2010; and the ‘‘odd’’ years are 1983, 1985, . . . , 2011. These parameters are explained in appendix A.

Parameter Operational option Alternative options

1. First guess Unadjusted ERSSTv4 Unadjusted and adjusted ERSSTv4

2. SST STD for QC OISST v2 (1982–2011) COADS (1950–79); OISST v2

3. Minimum SST STD 1.08C 0.58, 1.08, 1.58C
4. Maximum SST STD 4.58C 3.58, 4.58, 5.58C
5. SST STD multiplier 4.5 3.5, 4.5, 5.5

6. SST observation random error 0.08C 1.38C for ship SSTs and 0.58C for

buoy SSTs

7. Ship SST error 1.38C 1.28, 1.38, 1.48C
8. Buoy SST error 0.58C 0.48, 0.58, 0.68C
9. Argo SST error 0.58C 0.48, 0.58, 0.68C
10. SSTA calculation In situ basis Gridbox basis; in situ basis

11. NMAT for SST bias HadNMAT2 UKMO NMAT; HadNMAT2;

HadNMAT2 in three latitudinal belts:

908–308S, 308S–308N, 308–908N;

HadNMAT2 in 258 3 258 running
domain

12. Ship SST bias smoothing Lowess f 5 0.10 Annual; lowess f 5 0.10; linear;

lowess–linear

13. Ship SST bias readjustment

based on buoy SST

0.0778C 0.0628, 0.0778, 0.0928C

14. Argo SST adjustment based on

buoy SST

0.038C 08, 0.038, 0.068C

15. Buoy SST weighting 6.8 5.8, 6.8, 7.8

16. Argo SST weighting 6.8 5.8, 6.8, 7.8

17. Max number of observations 10 5, 10, 15

18. Min number of months for

annual average

2 1, 2, 3

19. Min ratio of superobs 0.03 0.02, 0.03, 0.04

20. Min number of years for LF filter 2 yr 1, 2, 3 yr

21. LF filter period 15 yr 11, 15, 19 yr

22. HF filter period 3 month 1, 3 month

23. EOT training periods and spatial

scales

1982–2011

(Lx, Ly) 5 (5000, 3000) km

1982–2011, (Lx, Ly) 5 (5000, 3000) km;

1982–2011, (Lx, Ly) 5 (6000, 4000) km;

1982–2011, (Lx, Ly) 5 (4000, 2000) km;

1982–2005, (Lx, Ly) 5 (5000, 3000) km;

1988–2011, (Lx, Ly) 5 (5000, 3000) km;

Even years from 1982 to 2012, (Lx,Ly)5
(5000, 3000) km; Odd years from 1983 to

2013, (Lx, Ly) 5 (5000, 3000) km

24. EOT weighting W 5 N/(N 1 j2)cos(u) W 5 cos(u); W 5 N/(N 1 j2)cos(u)
25. EOT acceptance value 0.10 0.05, 0.10, 0.20

26. Ice concentration factor 1.0 0.9, 1.0, 1.1

27. Min ice for SST adjustment 0.6 0.5, 0.6, 0.7

28. Max ice for SST adjustment 0.9 0.8, 0.9, 1.0
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Dataset (ICOADS) Release 3.0 (R3.0) (Freeman et al.

2017). The Argo temperature data of 0–5-m depth

are defined as SSTs, and the data are from the Argo

Global Data Assembly Centre (GDAC; https://www.

seanoe.org/data/00311/42182/). A recent study (Huang

et al. 2019) suggested that Argo and buoy SSTs are

playing an equally important role in SST analyses in the

global oceans. Huang et al. (2017, 2018, 2019) demon-

strated that spatial and temporal variabilities of SSTs

are more realistic and more reliable in ERSSTv5 com-

pared with previous versions. Using these observations

from ships, buoys, and Argo floats, ERSSTv5 is further

processed as follows.

1) QUALITY CONTROL

Observations from ships, buoys, and Argo floats are

subject to quality control (QC) before being ingested

into the ERSSTv5 system because random and system-

atic errors may be present. The random errors are larger

in ship observations and smaller in buoy and Argo ob-

servations (Reynolds et al. 2002; Smith and Reynolds

2003, 2004, 2005; Kent and Challenor 2006; Kennedy

et al. 2011a,b), which have been taken into account in

parameters 7–9 (Table 2 and appendix A). QC is per-

formed by computing the difference between observa-

tions and a first guess at regular 28 3 28 grids or in situ

locations using an SST standard deviation (STD; 1s)

and a multiplication factor, while SST STD itself is

limited by a minimum and a maximum. The final num-

ber of observations ingested into ERSSTv5 depends

on 10 QC parameters (parameters 1–10; Table 2 and

appendix A).

2) BIAS CORRECTION

Ship SSTs may contain biases for a variety reasons

(Smith and Reynolds 2003, 2004, 2005; Kennedy et al.

2011a,b; Huang et al. 2015). Biases in ship SST measure-

ments are corrected in ERSSTv5 using bias-corrected

nighttime marine air temperatures (NMATs) from the

Hadley Centre (HadNMAT2; Kent et al. 2013) as a

large-scale measurement frame of reference before

1985. The quantification of the ship biases depends on

the region of interest and variance of SST and NMAT.

However, ship biases after 1985 are quantified using

more accurate and precise buoy SSTs from ICOADS

R3.0, which are used to adjust ship biases determined

from NMAT. Similarly, biases in Argo SSTs resulting

from slight differences in observing depth are cor-

rected according to buoy SSTs based on statistics over

1990–2010. Corrections to ship and Argo SSTs are

designed to maximize compatibility with buoy SSTs

at a nominal depth of 0.2m. However, the compati-

bility may vary when different options of parameters

11–14 (Table 2 and appendix A) are selected, particu-

larly in the selection of different NMAT and different

bias fitting domains.

3) SUPEROBSERVATION AND ITS LOW- AND

HIGH-FREQUENCY COMPONENTS

The observations from ships, buoys, and Argo floats

are merged into superobservations (superobs) on 28 3 28
grids using a weight determined by their signal-to-noise

ratios and a maximum number (5–15) of observations

(Reynolds and Smith 1994; Reynolds et al. 2002).

Annually averaged superobs are first calculated with a

minimum of 1–3 months within a year. The reconstruc-

tion itself consists of low- and high-frequency compo-

nents. The low-frequency (LF) component of annually

averaged superobs is determined by a running window

of 11–19 yr and a spatial window of 258 3 258. The
missing values in superobs fields are filtered out by filling

the running average when the ratio of superobs coverage

within 258 3 258 reaches a minimum criterion. The high-

frequency (HF) component for each grid box is set as the

difference between superobs and LF component, and is

further filtered by a 1–3-month filter. Therefore, the

separation of LF and HF components involves param-

eters 15–22 (Table 2 and appendix A).

4) HF DECOMPOSITION

The HF component is decomposed using a maximum

of 140 EOTs calculated with different sets of training

data that are sensitive to the EOTs (Huang et al. 2017).

These EOTs are fitted using different weighting

methods. Not all 140 EOTs are used to reconstruct the

HF component of SSTs. The final selection of EOTs is

based on a minimum criterion of EOT variance sup-

ported by superobs. The HF decomposition is sensitive

to the selections of parameters 23–25 (Table 2 and

appendix A).

5) ICE CONCENTRATION CONSTRAINT

In the high latitudes, the reconstructed SST should be

consistent with the freezing point of seawater in regions

covered with sea ice. Sea ice concentration is derived

from satellite observations and may differ around 10%

among available ice concentration products. In the area

of mixed open water and sea ice, the final SST is in-

terpolated between reconstructed SST and seawater

freezing point of21.88C. The range of ice concentration
is given by a minimum and maximum concentration

(Reynolds et al. 2002; Smith et al. 2008). Therefore, op-

tions for parameters 26–28 (Table 2 and appendixA)may

impact the final SST in the region covered with sea ice.

Most of these 28 parameters in processing ERSSTv5

in sections 3a(1)–3a(5) are the same as those used in
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estimating the uncertainty of ERSSTv4 (Huang et al.

2016). New parameters are added here for ERSSTv5

in association with Argo SSTs (Table 2, rows 9, 14, and

16) and the readjustment of ship SSTs according to

buoy SSTs (Table 2, row 13). The NMAT selec-

tion parameter (Table 2, row 11) used in correcting

ship SSTs is revised by adding a 258 3 258 running

domain in ERSSTv5. In addition, more parameter

options are considered here for the EOT modes

(Table 2, row 23).

Options of these 28 parameters in ERSSTv5 are

first determined by perturbing parameter values by

10%–100% (Table 2). These options are then ran-

domly selected in generating a 1000-member ensemble

of SST anomalies (SSTAs; referenced to the 1970–2000

climatological mean). The ensemble is finally used to

quantify the parametric uncertainty.

b. SST uncertainty methods

The uncertainties in the early versions of ERSSTv3b

and NOAAGlobalTemp v3 (Smith et al. 2008; Vose

et al. 2012) consist of low-frequency uncertainty, high-

frequency uncertainty, and bias uncertainty. In the

ocean component, the low-frequency uncertainty was

estimated using SST variances from a coupled model

simulation. The high-frequency uncertainty was esti-

mated using SST variance difference between OISST

and ERSST. The bias uncertainty was estimated us-

ing the absolute difference of SST biases between

ERSSTv3b and HadSST3. These uncertainty estima-

tions in ERSSTv3b and NOAAGlobalTemp v3 was

reasonable by applying ERSSTv3b bias correction,

which generally decrease with time. However, when

the updated SST bias correction of ERSST v4 and

v5 was applied, the bias uncertainty and therefore

the total uncertainty was large between the 1920s

and 1960s and smaller before the 1920s and after the

1960s. In particular, there are no clear reasons to explain

why the uncertainty increased from the 1880s to

the 1920s. In addition, the estimation of the uncer-

tainties in ERSSTv3b and NOAAGlobalTemp v3

was very much dependent on OISST and model sim-

ulations, but not much dependent on ERSST or

NOAAGlobalTemp themselves. Therefore, the uncer-

tainty algorithms are updated in ERSSTv4, ERSSTv5,

and NOAAGlobalTemp v5 as in the following subsections.

1) PARAMETRIC UNCERTAINTY

Following Huang et al. (2016), SST uncertainty is

separated into parametric and reconstruction uncer-

tainties. The 1000-member ensemble is used to assess

parametric uncertainty («p) at gridbox level (i.e., local

SST uncertainty):

«2p(x, y, t)5
1

M
�
M

m51

[A
m
(x, y, t)2A(x, y, t)]2, (1)

A5
1

M
�
M

m51

A
m
(x, y, t), (2)

where Am represents one of an M-member ensemble

ERSSTv5 analysis using in situ observations from

ships, buoys, and Argo floats; A represents the en-

semble mean, and M 5 1000. Symbols x, y, and t rep-

resent longitude, latitude, and time, respectively.

Local SST uncertainties from Eq. (1) can be area-

averaged into regional- and global-scale uncertainties,

which allows typical grid box uncertainties in different

regions to be compared easily. However, these area-

averaged uncertainties are generally much larger than

the uncertainty associated with an area-averaged SST

such as the global oceans:

«2p(t)5
1

M
�
M

m51

[Ag
m(t)2Ag(t)]

2
, (3)

Ag 5
1

M
�
M

m51

Ag
m(t) , (4)

where superscript g represents the average over the

global oceans.

2) RECONSTRUCTION UNCERTAINTY

The intention of applying EOT decomposition in SST

reconstruction is to filter out potential noise or random

errors in observations and to interpolate available ob-

servations to data-void areas using the spatial covari-

ance spanned by the set of EOTs. However, the EOT

decomposition with a limited number of modes can

bring about residual errors even if observations were

perfect (free of noise or random errors and 100% area

covered over the entire global oceans). The residual

between perfect observations and their EOT decom-

position is defined here as reconstruction uncertainty

(«r), which is the variance not spanned by the set of

EOT modes used. As in Huang et al. (2016), pseudo-

observational datasets (e.g., gridded products from

model simulations, reconstruction analysis, or re-

analysis) are used to generate another set of 1000-

member ensemble and «r of local SST is assessed as

follows:

«2r (x, y, t)5
1

N
�
N

n51

[A
n
(x, y, t)2D(x, y, t)]2, (5)

where An represents one member of an N-member (N5
1000) ensemble reconstruction using pseudo-observation
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dataset D(x, y, t) as described in section 2a. Similar to

Eq. (3), «r of the globally averaged SST is calculated as

«2r (t)5
1

N
�
N

n51

[Ag
n(t)2Dg(t)]2 , (6)

where superscript g represents a global average. In

section 3d, «r is quantified using OISST described in

section 2a, which is very similar when different model

simulated data are used as shown in Huang et al. (2016).

We want to clarify that the differences between «r
and «p in Eqs. (1) and (5) are in two aspects. First, the

estimation of «r uses pseudo-observations that have a

complete spatial and time coverage, while the esti-

mation of «p uses in situ observations that do not

have a complete spatial and time coverage. Second, «p is

quantified as a root-mean-square difference (RMSD)

between ensemble members and ensemble average,

while «r is quantified as a RMSD between ensem-

ble members and pseudo-observations. In principle, «p
is associated with the uncertainty of temperature when

temperature sampling changes with space and time,

while «r is associated with the residual error that cannot

be resolved by a set of limited EOTs.

3) TOTAL UNCERTAINTY

The total uncertainty («t) in ERSSTv5 consists of

parametric uncertainty [Eqs. (1) and (5)] and recon-

struction uncertainty [Eqs. (3) and (6)]:

«2t (x, y, t)5 «2p(x, y, t)1 «2r (x, y, t0), (7a)

«2t (t)5 «2p(t)1 «2r (t0) , (7b)

where the time variable t in «p and «t represents time in

month and year, and time variable t0 in «r represents

monthly mean from January to December. The aver-

aged (1982–2017) «r is used in Eq. (7) since its variability

over time is very small.

It should be noted that the total uncertainty in Eq. (7)

does not explicitly include the sampling uncertainty

since it has implicitly been included in parameter un-

certainty as discussed in Huang et al. (2016). When the

sampling of observations is complete in space and time

and the quality of observations is perfect, the parametric

uncertainty will approach zero and the total uncertainty

will approach the reconstruction uncertainty.

c. SST parametric uncertainty

The parametric uncertainty («p) in ERSSTv5 quanti-

fied in Eqs. (1) and (2) is generally larger in the earlier

period (say 1854–1900; Fig. 1a) than the later periods

of 1900–50 (Fig. 1b) and 1950–2010 (Fig. 1c). This is

because with denser sampling in the more recent de-

cades the analysis is less sensitive to the details in the

parameter settings (Huang et al. 2017). In the earlier

period (Fig. 1a), «p is 0.68–0.88C in the northwestern

North Pacific, the northwestern North Atlantic, the

eastern equatorial Pacific, and the eastern equatorial

Atlantic, which is largely associated with low observa-

tion coverage and/or strong SST variability in these

areas. In contrast, «p is less than 0.48C in other regions,

particularly in the Arctic and the Southern Ocean. The

smaller uncertainty in the Arctic and the Southern

Ocean does not necessarily mean that the analysis is

accurate, but only implies that the analysis is less sen-

sitive to the changes of the 28 internal parameters in

those regions. Dominant factors for the small uncer-

tainty are that the areas are often covered with sea ice

and therefore SSTs are less variable. Further, the ob-

servations over these regions are extremely sparse,

leaving the reconstructed SSTA persistently near zero.

As observation coverage increases, «p decreases in the

northwestern North Pacific, the northwestern North

Atlantic, the eastern equatorial Pacific, and the eastern

equatorial Atlantic (Figs. 1b,c). In the later period

(Fig. 1c), «p is relatively large (approximately 0.28C) in
the Southern Ocean due to sparse observational cover-

age over the area. With no observations «p is low be-

cause the analyzed anomaly is always near zero, which

implies that there may be an uncertainty component

that is not fully accounted for and can be explained by

the structural uncertainty (Kennedy 2014). With dense

observations «p is low because the dense sampling

makes parameter details less important. With few ob-

servations «p can be larger since details of the parameter

settings have more impact on the analysis. Averaged

over the global oceans (Fig. 2a; solid red), «p is ap-

proximately 0.48C before 1880 and decreases gradually

to less than 0.28C after 1960. There are two spikes of «p
(0.48C) in the short periods of the two world wars in

the later 1910s and early 1940s, respectively, due to low

observation coverage.

In contrast, «p of the globally averaged SST in ERSSTv5

quantified in Eqs. (3) and (4) is much smaller than that

of local SST, which is approximately 0.088C before 1880

and decreases to approximately 0.048C in the period of

1950–80 and less than 0.028C after 1980 (Fig. 2b; red

solid line). The «p of the globally averaged SST is much

smaller than that of the local SST over the global oceans,

because the uncertainty of the local SST largely cancels

when averaged over the global ocean.

The term «p of the local SST in ERSSTv5 (Figs. 1a–c)

is mostly consistent with that in ERSSTv4 (Figs. 1d–f)

over the global oceans, because internal parameters

and their selections are mostly the same in ERSSTv5
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and ERSSTv4. The difference is that the magnitude of

«p is approximately 0.18C smaller in ERSSTv5 (Fig. 2a,

solid red) than in ERSSTv4 (solid black) before the

1900s and in the late 1910s and early 1940s. Similarly, «p
of the globally averaged SST is 0.028–0.048C smaller in

ERSSTv5 (Fig. 2b, solid red) than in ERSSTv4 (solid

black) before the 1940s and after the 2000s, although

their temporal evolutions are very consistent.

Tests show that these differences of «p between

ERSSTv5 and ERSSTv4 are largely associated with the

changes in EOTs. EOTs in ERSSTv4 are damped to

zero north of 658N and south of 608S (Huang et al. 2015),

while EOTs in ERSSTv5 are not (Huang et al. 2017).

The purpose of damping the EOTs in the high latitudes

was to avoid a potential overshooting of observed SSTs

from lower latitudes to high latitudes. Tests showed that

FIG. 1. Parametric uncertainty (1s) of ERSSTv5 in (a) 1854–1900, (b) 1900–50, and (c) 1950–2010. (d)–(f) As in

(a)–(c), but for ERSSTv4. Contour intervals are 0.28C.
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the damping completely removes the impact of obser-

vations in high latitudes, which should be avoided as

observations in high latitudes increase rapidly in the

modern time period (Huang et al. 2017). The use of

nondamped EOTs enables a more reliable analysis that

is not sensitive to the selections of the other parameters

in ERSSTv5. This is why «p is lower in ERSSTv5 than

in ERSSTv4. When the EOTs in ERSSTv4 (EOTv4)

are used in the ERSSTv5 system while other parameter

selections in ERSSTv5 are held constant (Fig. 2), «p
values of both local and globally averaged SSTs in

EOTv4 (dotted green) become close to that in ERSSTv4

(solid black).

However, the change of EOTs cannot explain why «p
of the globally averaged SST is lower in ERSSTv5 in

the periods of 1920–40 and 1990–2017 (Fig. 2b, dotted

green and solid black). The lower «p over 1920–40 and

1990–2017 in ERSSTv5 is more consistent with overall

decreasing uncertainty due to increasing observation

coverage, while «p in ERSSTv4 increases in these two

periods. To detect the causes for lower «p in these pe-

riods in ERSSTv5, the 1000 ensemble members were

grouped according to the selections of a specific pa-

rameter. There are typically three potential options for

each parameter value, and therefore the size of each

group is approximately 333. Uncertainties within each

group were calculated for every parameter in both

ERSSTv5 and ERSSTv4 as shown in Eq. (3).

Based on this analysis, the higher uncertainty in

ERSSTv4 over 1920–40 is associated with selections of

the adjusted SSTs in the first-guess options from

ERSSTv3b (refer to row 1 of Table 1 in Huang et al.

2016) and the lower value (0.58C) in minimum STD

(Table 2, row 3). In contrast, the uncertainty in ERSSTv5

FIG. 2. (a) Globally averaged parametric uncertainty (1s) of local SST, and (b) parametric

uncertainty (1s) of globally averaged SST in ERSSTv5 (solid red), ERSSTv4 (solid black), and

EOTv4 (same as ERSSTv5 except for using EOTs from ERSSTv4; dotted green). A 12-month

running filter is applied in plotting.
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is not sensitive to the first-guess options from ERSSTv4

(Table 2, row 1) and minimum STD due to improved

ship SST bias correction over ERSSTv4. This indicates

that the use of more recent first guess from ERSSTv4

results in a lower uncertainty over 1920–40. Likewise,

our detection shows that the higher uncertainty in

ERSSTv4 over 1990–2017 is associated with the selec-

tion of a large increment of ship-buoy readjustment

[0.048C; refer to row 9 of Table 1 in Huang et al.

(2016)]. In contrast, the uncertainty in ERSSTv5 does

not change much over 1990–2017 because a much

smaller increment (0.0158C; Table 2, row 13) of ship-

buoy readjustment is used.

d. SST reconstruction uncertainty

The reconstruction uncertainty («r) quantified in

Eq. (5) is usually not sensitive to the selection of the

pseudo-observational dataset (Huang et al. 2016).

Therefore, «r is estimated here using the wOISST

(1982–2017) described in section 2a (Fig. 3). Since this

product has a complete spatial coverage over the entire

period of 1982–2017, «r over the global oceans is nearly

constant in time and its spatial distribution is very close

in ERSSTv5 and ERSSTv4 (Figs. 3a,b). To avoid the

dependence of «r estimation on wOISST in operational

ERSSTv5 uncertainty production, monthly «r is calcu-

lated from the uncertainty data over 1982–2017. The

averaged «r is 0.48–0.88C in the Gulf Stream, the

Kuroshio, and the northern North Atlantic where SST

variability is much larger than its global average. In the

tropical oceans, «r is smaller (approximately 0.28C).
On a global average, «r of local SST quantified in Eq. (6)

is approximately 0.38C (Fig. 3c) with little seasonal

variation. In contrast, «r of the globally averaged SST is

very small (0.018C; Fig. 3d). It should be noted that «r in

ERSSTv5 (Figs. 3c and 3d; solid red) is slightly higher

than that in ERSSTv4 (solid black) because the values of

the 28 internal parameters are randomly selected in

FIG. 3. Averaged (1982–2017) reconstruction uncertainty (1s) of (a) ERSSTv5 and (b) ERSSTv4, and seasonal

variation of (c) globally averaged 1s reconstruction uncertainty of local SST and (d) reconstructed uncertainty (1s)

of globally averaged SST in ERSSTv5 (solid red) and ERSSTv4 (solid black). Contour intervals are 0.28C in

(a) and (b).
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ERSSTv5 uncertainty estimation whereas the ‘‘best’’

parameter selections are employed in estimating the

reconstruction uncertainty in ERSSTv4. The higher «r
in ERSSTv5 may represent the covariance term of «p
and «r that is ignored in Eq. (7) when total uncertainty is

estimated.

e. SST total uncertainty

The total uncertainty («t) is quantified using Eq. (7).

The averaged (1854–2017) «t (Fig. 4a) is large in the

northwestern North Pacific and the northwestern North

Atlantic (0.48–1.08C), central-eastern equatorial Pacific,

eastern equatorial Atlantic, and the Southern Ocean

(0.48–0.68C) where both «p and «r are relatively large.

Also, «t is large on the coasts of the Arctic (0.48–0.68C)
due to a large «r; however, overall «t in the Arctic is

small (approximately 0.28C) since much of the area is

covered by permanent sea ice and therefore both the

parametric and reconstruction uncertainties are small.

On global average (Fig. 4b), «t of local SST is approx-

imately 0.58C before the 1880s, and decreases gradu-

ally to less than 0.48C after the 1950s. Mostly «t (solid

black) is attributed to «p (dotted red) before the 1910s

and during the two world wars. After 1950, «t (solid

FIG. 4. (a) Averaged (1854–2017) total uncertainty (1s) of local SST in ERSSTv5,

(b) globally averaged total uncertainty (1s) of local SST, and (c) total uncertainty (1s) of

globally averaged SST in ERSSTv5 (solid black) and ERSSTv4 (dotted black) overlapped

with the parametric uncertainty (dotted red) and reconstruction uncertainty (dotted green) in

ERSSTv5. Contour intervals are 0.28C in (a). A 12-month running filter is applied in plotting

in (b) and (c).
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black) is mostly attributed to «r (dotted green). Overall,

«t in ERSSTv5 (solid black) is consistent with that in

ERSSTv4 (dotted black). One exception is that «t is

lower by 0.18C in ERSSTv5 before the 1900s due to the

nondamped EOTs applied in ERSSTv5. Another ex-

ception is that «t is slightly higher in ERSSTv5 after the

1950s, which is attributed to the slightly higher «r due to

random selections of internal parameter values in as-

sessing «r in ERSSTv5.

In contrast, «t of the globally averaged SST in

ERSSTv5 (Fig. 4c; solid black) is dominated by «p
(dotted red). The contribution from «r (dotted green) is

much less than that from «p until the 2000s. In ERSSTv5

«t (solid black) is 0.028–0.048C smaller than that in

ERSSTv4 (dotted black) before the 1910s and over

1920–40, and is approximately 0.028C smaller after 2000.

The smaller «t is attributed to the use of the nondamped

EOTs in ERSSTv5 before the 1910s, to the updated first

guess over 1920–40, and to updated ship-buoy adjust-

ment after 1990 as discussed in section 3c.

4. LSAT and its uncertainty

a. GHCNm v4 and its 100-member ensemble

Monthly LSAT anomalies on 58 3 58 grids from

GHCNm v4 over 1880–2016 (Menne et al. 2018) are

used as the land component of NOAAGlobalTemp v5.

GHCNm v4 includes station data from GHCN-Daily

(Menne et al. 2012), GHCNmv3 (Lawrimore et al. 2011),

and the International Surface Temperature Initiative

(ISTI;Rennie et al. 2014). The number of stations ismuch

larger in GHCNm v4 (approximately 25000) than in

GHCNm v3 (approximately 7000), which is partly attrib-

uted to the inclusion of stations with incomplete records

over the base period of 1961–90. The area coverage

increases by 3%–15% over 1880–1940, 9%–15% over

1940–90, and approximately 20% over 1990–2016 in

GHCNm v4 compared with v3.

GHCNm v4 station data are screened for random

errors through spatial and temporal consistency checks

(Lawrimore et al. 2011; Menne et al. 2012, 2018). The

station data are homogenized using the pairwise ho-

mogenization algorithm (PHA; Menne and Williams

2009), which detects and minimizes shifts caused by

changes in the observing environment surrounding the

station, observing instrument replacements, daily ob-

serving frequency, and station relocations.

A 100-member ensemble (Table 3, row 1) of GHCNm

v4 (Menne et al. 2018) was used to estimate uncer-

tainties resulting from 1) the methods used to homoge-

nize and grid the station data (Jones et al. 1997; Morice

et al. 2012), 2) nonstandard instrument exposures (Folland

et al. 2001; Brohan et al. 2006; Trewin 2010;Morice et al.

2012), and 3) station distributions within grid boxes

(Jones et al. 1997). Note that only 35 ensemble members

are used over Antarctica where the low station density

and lack of records prior to the midtwentieth century

limits the use of the full range of parameter variations

described in Menne et al. (2018).

b. Interpolated LSAT and its 1000-member ensemble

To further explore the uncertainty in LSAT asso-

ciated with the geographic coverage of the gridbox

anomalies, each of the 100-member LSATs from

GHCNm v4 is interpolated over the global land and

expanded to a 1000-member ensemble as follows

(Smith et al. 2008; Table 3 and appendix B):

1) The annual LSAT anomaly is calculated as the mean

of themonthly anomalies with aminimum number of

months 1–3.

TABLE 3. LSAT parameters and their operational and alternative options. In parameter number 5, the ‘‘even years’’ are 1982,

1984, . . . , 2010; and the ‘‘odd’’ years are 1983, 1985, . . . , 2011. These parameters are explained in appendix B.

Parameter Operational option Alternative options

1. GHCNm v4 data First of 100 members Random selection of 100 members

2. Min number of months annual average 2 months 1, 2, 3 months

3. LF filter periods 15 yr 11, 15, 19 yr

4. Min number of years for LF filter 2 yr 1, 2, 3 yr

5. EOTs training periods and spatial scales 1982–2011, Lx 5 4000 km,

Ly 5 2000 km

1982–2011, Lx 5 4000 km, Ly 5 2000 km;

1982–2011, Lx 5 5000 km, Ly 5
3000 km; 1982–2011, Lx 5 3000 km,

Ly5 1000 km; 1982–2005,Lx5 4000 km,

Ly 5 2000 km; 1988–2011, Lx 5
4000 km,Ly5 2000 km; 1982–2011 even

years, Lx 5 4000 km, Ly 5 2000 km;

1982–2011 odd years, Lx 5 4000 km,

Ly 5 2000 km

6. EOT acceptance criterion 0.2 0.15, 0.20, 0.25
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2) The annual LSAT anomaly is separated into LF and

HF components. The LF component is retrieved by

applying a filter of 258 3 258 in space and 11–19 yr in

time if a minimum of 1–3-yr data is available.

3) The HF component is initially set as the differ-

ence between original LSAT anomaly and its LF

component, and then decomposed by a maximum

of 65 EOTs with different spatial scales and dif-

ferent training periods. However, not all 65 EOTs

are used in the decomposition. The acceptance

of a specific EOT mode is determined by the

acceptance criterion of 0.15–0.25 (Table 3, row

6) that quantifies whether the EOT mode is sup-

ported by observations. The acceptance criterion is

calculated as a ratio between the EOT variance

over the area of observations and the total EOT

variance.

4) The decomposed HF components are summed and

combined with the LF component. By using LF

filter and HF decomposition, the GHCNm v4 data

are interpolated to the land surface area where no

observations are available.

By randomly selecting the values of the parame-

ters listed in Table 3, a 1000-member ensemble of in-

terpolated LSAT ensemble is generated on monthly

58 3 58 grids over the global land surface. This ensemble

LSAT is used to assess the parametric uncertainty in the

framework of NOAAGlobalTemp v5 in the following

section 4c. By using a limited set of 65 EOTs in HF

reconstruction, a reconstruction uncertainty (section 4d)

is introduced and needs to be included in the total

uncertainty (section 4e).

c. LSAT parametric uncertainty

The parametric uncertainty («p) of local and globally

averaged LSAT is defined using 1000-member LSAT

ensemble in a similarmethod inEqs. (1)–(4) in section 3b.

Figure 5 shows the averaged «p of local LSAT in four

time periods. For 1880–1900 (Fig. 5a), «p is large (0.88–
1.58C) in northern North America, tropical South

America between 158S and 158N, northern Africa be-

tween the equator and 308N, and northeasternAsia. The

large «p is associated with sparse data coverage in those

regions. Generally «p is smaller (0.28–0.48C) in other

regions. In Antarctica, there are no observations before

the 1950s, and consequently the reconstructed LSAT

anomaly is near zero, which may imply an unaccounted

for uncertainty component associated with a structural

uncertainty (Kennedy 2014). Therefore LSAT variation

among ensemble members is not sensitive to the selec-

tions of the internal parameters, which results in a small

«p in Antarctica (0.48–0.68C).

For 1900–50 (Fig. 5b), the spatial distributions of «p
are similar to those over 1880–1900. Note that «p re-

mains large (0.88–1.58C) in northern North America.

However, the magnitude of «p decreases in tropical

South America between 308S and 158N (0.68–0.88C),
northern Africa between the equator and 308N (0.68C),
and northern Asia north of 608N (0.68–0.88C). The value
of «p in Antarctica remains small (0.48–0.68C) due to the

absence of observations.

For 1950–2010 (Fig. 5c), «p continues to decrease in

North and South America, Africa, and Eurasia (0.48–
0.68C) as observational coverage increases, while «p re-

mains high (0.68–1.08C) in Greenland due to the absence

of observations. However, «p in Antarctica increases

slightly to 0.48–0.88C because observations are collected

after the 1950s along the coast of Antarctica, in the

islands of the Ross Sea and the Weddell Sea, in the

Antarctic Peninsula, and in the interior of Antarctica.

However, these observations are sparse and do not

cover all of Antarctica, and thus the resulting LSAT

FIG. 5. Parametric uncertainty (1s) of local LSAT in (a) 1880–

1900, (b) 1900–50, and (c) 1950–2016. Contours are 0.28, 0.48, 0.68,
0.88, 1.08, and 1.58C.
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reconstructions are relatively sensitive to the selec-

tions of the internal parameters, which leads to a slightly

higher «p in Antarctica.

Averaged over the global land surface (Fig. 6a, solid

red), «p of local LSAT is approximately 0.78C for 1880–

1900 and decreases to 0.48C for the 2000s–2010s

except for a slight increase in the 1950s, which is as-

sociated mostly with the increased «p in Antarctica

(Fig. 5c). Overall, «p of local LSAT (Fig. 6a, solid red) is

approximately 2 times larger than that of local SST

(Fig. 6a, dotted black) because of the larger variance in

LSAT anomalies compared to SST anomalies.

The value of «p of globally averaged LSAT (Fig. 6b,

solid red) is much smaller than «p of local LSAT. The

«p of globally averaged LSAT is only 0.098–0.188C for

1880–1910, decreases to approximately 0.078C from

the 1950s to 1980s, and decreases further to 0.048C in

the 2000s. In comparison to «p of globally averaged

SST (Fig. 6b, solid black), «p of globally averaged

LSAT (Fig. 6b, solid red) is 0.048–0.108C higher over

1880–1910, about 0.038C higher over 1920–40, and

approximately 0.028C higher after the 1950s.

d. LSAT reconstruction uncertainty

The reconstruction uncertainty («r) of local and

globally averaged LSAT are defined, as for SST, in Eqs.

(5) and (6) in section 3b using a 1000-member ensemble.

The «r of local LSAT is assessed using pseudo-observations

of LSATs from coupled model simulations of CanESM2,

GFDL-ESM2G, and HadGEM2 over the period of 1861–

2007 described in section 2a. Figure 7 shows that the

averaged (1861–2007) «r is low (approximately 0.48C) over
most of Eurasia, Africa, Australia, North America, and

South America, is slightly higher (approximately 0.68–
0.88C) over Greenland, Alaska, western North America,

and northern Canada, and is the highest (0.88–1.08C) over

FIG. 6. (a) Globally averaged parametric uncertainty (1s) of local SST, LSAT, and LSAT

without including the Antarctic; (b) parametric uncertainty (1s) of globally averaged SST,

LSAT, and LSAT without including the Antarctic. A 12-month running filter is applied in

plotting.
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Antarctica. Overall, «r is very similar when different

LSAT pseudo-observations are used, which suggests

that «r is stable. Later in section 4e, «r derived using

HadGEM2 is used to estimate the total uncertainty

of LSAT.

There are two factors that result in a high «r in

Antarctica and Greenland: 1) the higher variability of

LSAT and 2) the lower reliability of EOTs in these

regions. The variability of LSAT is generally large (28–
48C) over Northern Hemisphere land areas north of

408N and in Antarctica, and is smaller (0.58–1.08C) over
the tropical–subtropical land between 608S and 408N.

Since observations over Antarctica and Greenland

are sparse, ERA-Interim and its derived EOTs may be

less reliable in these regions. Furthermore, the modes

of LSAT variability in ERA-Interim differ from those

in the coupled model simulations, which may lower the

capability of EOTs derived from ERA-Interim in re-

constructing the LSAT from the coupled model.

In Eurasia and North America north of 408N, EOTs

are more reliable due to relatively dense observations.

The variability of LSAT is consistent between ERA-

Interim and the coupled model simulations, although

the variability is large (28–48C). Therefore, «r is rela-

tively smaller. In tropical–subtropical regions between

608S and 408N, in addition to the reliable EOTs and the

consistency of LSAT variability between ERA-Interim

and coupled model simulations, the low variability of

LSAT (0.58–1.08C) also contributes to the lower «r.

Overall, the globally averaged «r of local LSAT is nearly

constant 0.58C (Fig. 8a) with a slight seasonal variation

(Fig. 8c) using all three coupled model simulations, which

is slightly larger than the «r of local SST (0.38C; Fig. 4b,
dotted green). In contrast, the «r of the globally averaged

LSAT is approximately 0.038C with little seasonal varia-

tion using all three coupledmodel simulations (Figs. 8b,d),

which is slightly larger than that of globally averaged SST

(0.018C; Fig. 4c, dotted green). The higher «r in LSAT than

in SST is associated with a smaller number of EOTs in

LSAT (65 at maximum) than in SST (140 at maximum), as

well as the higher LSAT variance.

e. LSAT total uncertainty

The total uncertainty («t) of LSAT consists of para-

metric and reconstruction uncertainty as shown in

Eq. (7). HadGEM2 is used here to assess the recon-

struction uncertainty because it has a slightly higher

uncertainty over Antarctica to avoid potential under-

estimation. The monthly reconstruction uncertainty

with seasonal variation is calculated and added with the

parametric uncertainty to form «t. Figure 9a shows the

averaged (1880–2016) «t of local LSAT: «t is high (0.88–
1.58C) over North America, South America near the

equator, northernAfrica between the equator and 308N,

northeastern Asia north of 608N, China, and Antarctica.

The high «t in these regions is mostly attributed to

the parametric uncertainty (Fig. 5). However, «t in

Antarctica is attributed mainly to the reconstruction

uncertainty (Fig. 7), while both parametric and recon-

struction uncertainties contribute in Greenland, China,

and adjacent regions.

Averaged over the global land surface (Fig. 9b, solid

black), «t of local LSAT is 0.88–0.98C for 1880–1900,

decreasing slightly to approximately 0.68C in the 2010s;

this «t is mostly attributed to parametric uncertainty

(0.58–0.78C) before the 1980s (Fig. 9b, dotted red) and

to reconstruction uncertainty (0.58C) after the 1980s

(Fig. 9b, dotted green). In contrast, «t of globally aver-

aged LSAT (Fig. 9c, solid black) is mainly due to para-

metric uncertainty (Fig. 9c, dotted red) over the entire

period of the 1880s–2010s. The contribution from re-

construction uncertainty (Fig. 9c, dotted green) is small.

FIG. 7. Averaged (1861–2007) reconstruction uncertainty (1s) of

LSAT using perfect surface air temperature from (a) CanESM2,

(b) GFDL-ESM2G, and (c) HadGEM2. Contours are 0.28, 0.48,
0.68, 0.88, 1.08, and 1.58C.
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5. NOAAGlobalTemp v5 and its uncertainty

a. NOAAGlobalTemp v5

NOAAGlobalTemp v5 (Zhang et al. 2019) is a

monthly 58 3 58 gridded dataset consisting of LSAT

from GHCNm v4 (Menne et al. 2018) and ERSSTv5

(Huang et al. 2017). A 1000-member ensemble of

NOAAGlobalTemp v5 is generated by merging ERSSTv5

and LSAT ensembles. For example, a NOAAGlobalTemp

ensemble member is produced by merging a randomly

selected member of ERSSTv5 ensemble (section 3a)

and a randomly selected member of LSAT ensemble

(section 4a). The randomly selected members were not

removed from the pool and therefore they can be chosen

more than once. Tests showed that the uncertainty esti-

mation remained almost the same when the number of

NOAAGlobalTemp ensemble members increased from

1000 to 2000. To ensure temporal consistency between

ocean and land, the GHCNm v4 anomalies relative to

their base period over 1961–90 are adjusted according to

a climatological mean over 1971–2000. To ensure gridbox

consistency between ocean and land areas, ERSSTv5

anomalies on 28 3 28 grids are interpolated to 18 3 18
grids and then box-averaged to 58 3 58 grids that match

GHCNm v4. SSTA and LSAT anomalies are finally

merged; boxes with both land and ocean are weighted

according to the area ratio of land and ocean within a

specific grid box (Smith et al. 2008).

b. GST total uncertainty

The globally averaged uncertainty of local GST is

approximated by

«
t,G

5a«
t,S
1b«

t,L
, (8)

where «t,G, «t,S, and «t,L represent the globally averaged

total uncertainty of local GST, SST, and LSAT, re-

spectively; a and b are the ratios of the ocean and land

area over the globe, which are approximately 0.71 and

0.29, respectively. The reason for estimating globally

averaged uncertainty using Eq. (8) and later Eq. (9) is

that the reconstruction uncertainty of GST has to be

estimated separately over the land and in the oceans,

although the parametric uncertainty of GST can be

FIG. 8. (a) Globally averaged reconstruction uncertainty (1s) of local LSAT and (b) reconstruction uncertainty

(1s) of globally averaged LSAT from 1861 to 2007 using perfect data fromCanESM2 (solid black), GFDL-ESM2G

(dotted red), and HadGEM2 (dotted green). (c),(d) As in (a),(b), but for their seasonal variation.
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estimated using merged GST. Since the ocean surface

area is more than twice as large as the land surface area,

the globally averaged «t,G of local GST (Fig. 10a, solid

green) is closer to that of local SST (Fig. 10a, solid

black). Overall, «t,G of local GST (Fig. 10a) is approx-

imately 0.68C for 1880–1900 and decreases to approx-

imately 0.48C in the 2010s, with two spikes during the

two world wars.

The globally averaged «t,G of local GST in

NOAAGlobalTemp v5 (Fig. 11a, solid red) is compared

with that in HadCRUT4 (Fig. 11a, solid green). The «t,G
in HadCRUT4 includes uncorrelated, supplementary,

and parametric components over 58 3 58 grids for local

GST, which is attributed to the uncertainties of HadSST3

and CRUTEM4. The uncertainty of CRUTEM4 is fur-

ther attributed to sampling, station, and bias compo-

nents (Morice et al. 2012). Comparisons show that «t,G of

local GST in NOAAGlobalTemp v5 is 0.18–0.28C higher

than that in HadCRUT4. The lower uncertainty in

HadCRUT4 results from a lower uncertainty of local

LSAT in CRUTEM4 (Fig. 12b, solid green) than in

GHCNm v4 (Fig. 12b, solid red), because the uncer-

tainty of local SST in ERSSTv5 is very close to that in

HadSST3 (Fig. 12a). The higher uncertainty of local

LSAT in reconstructed GHCN v4 is largely a result of

its more comprehensive assessment of homogenization

FIG. 9. (a) Averaged (1880–2016) total uncertainty (1s) of local LSAT, (b) globally av-

eraged total (solid black), parametric (dotted red), and reconstruction (dotted green) un-

certainty (1s) of local LSAT, and (c) total, parametric, and reconstruction uncertainty (1s) of

globally averaged LSAT. Contours are 0.28, 0.48, 0.68, 0.88, 1.08, and 1.58C in (a). A 12-month

running filter is applied in plotting in (b) and (c).
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uncertainty, which leads to more variance in station

anomalies within the ensemble, especially for the deeper

past, whereas the CRUTEM uncertainty model for this

component only accounts for undetected breaks in station

data that average to zero. In addition, the inclusion of

reconstruction uncertainty may also contribute somewhat

to the larger LSAT uncertainty in GHCN v4. When re-

construction uncertainty is excluded in GHCN v4, the

uncertainty of local LSAT is very close in GHCN v4

(Fig. 12b, dotted red) and CRUTEM4 (Fig. 12b, solid

green) before the 1990s. It should be noted that the un-

certainty in CRUTEM4 increases slightly after the

1980s. The reason for this is not immediately clear but

is likely associated with reductions in station numbers

and spatial coverage. In contrast, the uncertainty in

GHCNm v4 decreases gradually after the 1990s.

The total uncertainty («t,G) of globally averaged surface

temperature (GST) is calculated according to Ku (1966):

«2t,G 5a2«2t,S 1b2«2t,L, (9)

where «t,G, «t,S, and «t,L represent the total uncertainty of

globally averaged GST, SST, and LSAT, respectively,

according to the approximation ofGST5 a3 SST1 b3
LSAT. The covariance term between SST and LSAT is

ignored since reconstructions of SST and LSAT are inde-

pendent. Calculations show that «t,G of globally averaged

GST (Fig. 10b, solid green) is 0.058–0.078C for 1880–1900

and decreases gradually to approximately 0.028C in the

2010s except for spikes during the two world wars. Overall,

«t,G of globally averaged GST is closer to that of globally

averaged SST (Fig. 10b, solid black) than to that of globally

averaged LSAT (Fig. 10b, solid red), which mostly results

from the greater areal weightings of SST.

The value of «t,G of globally averaged GST in

NOAAGlobalTemp v5 (Fig. 11b, dotted red) is com-

pared with that in HadCRUT4 (Fig. 11b, dotted

FIG. 10. (a) Globally averaged total uncertainty (1s) of local SST (black), LSAT (red), and

GST (green), and (b) total uncertainty (1s) of globally averaged SST, LSAT, and GST. A 12-

month running filter is applied in plotting.
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green) and BEST (Fig. 11b, dotted purple). The «t,G in

HadCRUT4 includes components of measurement,

sampling, bias, and coverage for globally averagedGST.

The «t,G in BEST includes statistical and spatial under-

sampling effects and ocean biases. Overall, «t,G is con-

sistent among NOAAGlobalTemp v5, HadCRUT4,

and BEST, particularly after the 1960s. However,

the «t,G in BEST is slightly higher (by 0.018–0.028C)
than in NOAAGlobalTemp v5 and HadCRUT4 for

1880–1960.

Since HadCRUT4 and BEST do not have valid values

in every grid box over the global surface, it is necessary

to include coverage uncertainty («c) (Brohan et al. 2006;

Kennedy et al. 2011a,b; Morice et al. 2012) when total

uncertainties are compared among products. The term

«c is associated with the error in estimation of globally

averaged surface temperature with nonglobally cov-

ered data; «c can be calculated by combining a selected

data mask (e.g., HadCRUT4) and a series of monthly

pseudo-observations. First, allmonthly pseudo-observations

are subsampled with the data mask at a specific month.

Second, global averages are calculated for both sub-

sampled and spatially complete pseudo-observations.

Finally, the STD between the global averages is de-

fined as the coverage uncertainty for that specific

data mask.

A common or collocated data mask among

NOAAGlobalTemp v5, HadCRUT, and BEST is used

to calculate «c using near-surface air temperature in

the NCEP–NCAR reanalysis (Morice et al. 2012). By

FIG. 11. (a) Globally averaged total uncertainty (1s) of local GST in NOAAGlobalTemp

(solid red) and HadCRUT4 with uncorrelated and supplementary terms (solid green).

(b) Uncertainties (1s) of globally averaged GST in NOAAGlobalTemp with (solid red) and

without (dotted red) coverage uncertainty («c; solid black), HadCRUT4 with (solid green)

and without (dotted green) «c, and BEST with (solid purple) and without (dotted purple) «c.

Note that «c is calculated using HadCRUT4 data mask and the near-surface air temperature

from the NCEP–NCAR reanalysis. A 12-month running filter is applied in plotting.
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including «c (Fig. 11b, solid black), «t,G is very consistent

among the three products (Fig. 11b; solid red, green, and

purple lines) since «c is the dominant term and the same «c
is used in all three products.

It should be noted that «c (Fig. 11b, solid black)

is clearly larger than the total uncertainties of the globally

averaged GSTs without including «c (Fig. 11b, dotted

lines), which may imply the importance of the spatial

coverage of observations to the uncertainty of GSTs. It

should also be noted that «c may depend on the spatial

variability of datasets for a given data mask. For com-

parison purposes, «c is calculated using the near-surface

air temperatures from ERA-Interim, and the LSAT over

the land and the SST over the oceans in HadGEM2-AO

and NOAAGlobalTemp v5. Comparisons indicate that

«c deviates very slightly (less than 0.028C)when different
near-surface temperatures are used.

The uncertainties in this study are for the temperatures

at monthly time scale, although a 12-month running

average is applied for the clarity of comparisons among

different uncertainty components and among different

products. The uncertainties at monthly time scale are

much larger than those at annual time scale as indicated

in Kennedy et al. (2011a).

c. GST comparisons

The globally and ensemble averaged GST of

NOAAGlobalTemp v5 is compared with those of

HadCRUT4, BEST, andGISTEMP (Fig. 13). Tomake the

comparison fair, the global average of NOAAGlobalTemp

v5 is first filtered with the common data mask. Following

HadCRUT4 (Morice et al. 2012), the global average

is first separated into the averages of the NH and

SH, and then the arithmetic average of the NH and

SH is calculated [i.e., hemispheric averages (HAs)].

Figure 13 shows that the GST derived from HAs

in NOAAGlobalTemp v5 is consistent with that in

HadCRUT4. However, the GST in NOAAGlobalTemp

FIG. 12. Globally averaged uncertainties (1s) of (a) local SST in ERSSTv5 (solid red) and

HadSST3 (solid green) and (b) local LSAT in GHCN v4 (solid red), GHCN v4 without

including reconstruction uncertainty («r; dotted red), and CRUTEM4 (solid green).
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v5 is slightly lower than HadCRUT4 for the 1920s–1960s

largely due to colder SST inERSSTv5 (Huang et al. 2015,

2017). The differences are within the uncertainty at the

95% confidence level (1.96s) regardless of which uncer-

tainty is used (i.e., NOAAGlobalTemp v5, HadCRUT4,

or BEST). It should be noted that the globally averaged

GSTs are very close in operational and ensemble av-

eraged NOAAGlobalTemp v5 and therefore the dis-

tribution of the ensemble GSTs is nearly symmetric

around the operational GST (not shown).

The linear trends of hemispheric and annually av-

eraged GST are calculated over different time periods

for each ensemble member. The fitting uncertainty at

the 95% confidence level is estimated by considering the

effective sampling number scaled by lag-1 autocorrelation

(von Storch and Zwiers 1999). For a given time series

T(i) of member i at time t, temperature can be fitted

linearly as

T(i)5 a(i)1 b(i)t6 c(i), for i5 1, N , (10)

where a(i) is a constant, b(i) is a fitted linear trend, and

c(i) is a fitting uncertainty at 95% percent confidence

level. Following Karl et al. (2015), the uncertainty of a

fitted trend («t) consists of data uncertainty («d) and

fitting uncertainty («f):

«2t 5 «2d 1 «2f . (11)

Here «d is quantified as 1.96s of the N-member linear

trends b(i); «f is quantified as the ensemble average of

the N-member fitting uncertainties c(i). Tests using

NOAAGlobalTemp v5 and HadCRUT4 indicate that

the uncertainty of a linear trend is mostly attributed to «f
while the contribution from «d is smaller, and that

1s variation of «f(i) among ensemble members is much

smaller than the ensemble average of «f(i). These fea-

tures indicate that the deviations among the ensemble

members of the globally averaged GST time series are

mostly systematic for a given set of randomly selected

parameter values within a specified reconstruction

methodology.

Table 4 displays the ensemble-averaged trends and

their uncertainties at the 95% confidence level in

NOAAGlobalTemp v5 over different time periods.

FIG. 13. Globally averaged GST anomaly in NOAAGlobalTemp v5 (solid white),

HadCRUT4 (solid red), BEST (dotted green), GISTEMP (dotted blue), and globally av-

eraged uncertainty at the 95% confidence level in NOAAGlobalTemp v5 (gray shading).

Global averages are based on hemispheric averages (HAs) using the common data mask

where all data have valid data. A 12-month running filter is applied in plotting.

TABLE 4. Linear trends (8C decade21)6 their uncertainty at the

95% confidence level of globally averaged GST. Global averages

are derived using HAs on the grids where all NOAAGlobalTemp v5,

HadCRUT4, BEST, and GISTEMP have valid data. Linear trends

are ensemble averages of 1000 members in NOAAGlobalTemp

v5, 100 members in HadCRUT4, and one member in BEST and

GISTEMP. Uncertainties include data uncertainty and fitting un-

certainty in Eq. (11), and have taken into account the effective

sampling number quantified by lag-1 autocorrelation.

1880–2016 1950–2016 2000–16

NOAAGlobalTemp

v5 Ensemble

0.069 6 0.012 0.134 6 0.020 0.187 6 0.110

HadCRUT4 0.066 6 0.010 0.118 6 0.024 0.163 6 0.114

BEST 0.070 6 0.009 0.119 6 0.022 0.174 6 0.113

GISTEMP 0.071 6 0.011 0.141 6 0.019 0.198 6 0.115

NOAAGlobalTemp

v5 Operational

0.071 6 0.011 0.135 6 0.019 0.197 6 0.114

NOAAGlobalTemp

v4 Operational

0.068 6 0.011 0.135 6 0.018 0.194 6 0.110
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Overall, the warming trends of GSTs are statistically

significant. The GST ensemble average trends are weak

(0.0698 6 0.0128C decade21) in the centennial time scale

(1880–2016), moderate (0.1348 6 0.0198C decade21)

in the decadal time scale (1950–2016), and highest

(0.1888 6 0.1108C decade21) in the twenty-first century

(2000–16), suggesting a stronger warming of GST in the

recent decades. Thewarming trend inNOAAGlobalTemp

v5 is slightly stronger than in HadCRUT4 and BEST,

which is mostly attributed to a stronger SST trend in

ERSSTv5 than HadSST3 (Huang et al. 2015, 2017).

However, the warming trend is slightly weaker in

NOAAGlobalTemp v5 than in GISTEMP, probably

due to different interpolation method over the land

surface. It should be noted that different time periods of

warming are used to measure the changes in warming at

different time scales. It may be argued that the higher

warming in the twenty-first century is associated with its

short time period and stronger external forcing.

The reason for using HAs is to compensate for

hemispheric differences in data coverage (i.e., poorer

coverage in the SH). However, comparisons show

that the global area-weighted average of GST and

its trends are very close to those of HAs in both

NOAAGlobalTemp v5 and HadCRUT4 (not shown).

The trend differences between those two methods are

small (less than 2%). In Fig. 13 and Table 4, ensemble

averages of GSTs are calculated as the arithmetic mean

of Nmembers. To avoid the impact of extremely low or

highGSTs among the ensemblemembers, themedian of

N members is selected in some studies to represent an

ensemble average (Morice et al. 2012; Kennedy et al.

2011a,b, 2019). However, our comparisons indicate

that the difference between the arithmetic mean and

median is small in both NOAAGlobalTemp v5 and

HadCRUT4.

After the 1980s (Fig. 13), the spatial distribution of

GSTs is similar among those products. For example, the

averaged GSTs over 1980–2016 (Fig. 14) show a higher

temperature anomaly (0.48 to 0.68C) in NH land areas

and a lower temperature anomaly (20.18 to 20.28C) in
the Southern Ocean. The spatial correlations among

FIG. 14. Averaged (1980–2016) GST in (a) NOAAGlobalTemp v5, (b) HadCRUT4, (c) BEST, and (d) GISTEMP

over a common data mask. Contours are 08, 60.18, 60.28, 60.48, and 60.68C.
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those products are high, with a maximum correlation

(0.96) between NOAAGlobalTemp v5 andHadCRUT4

and a minimum correlation (0.89) between BEST

and GISTEMP. Over the period of 1920–70 when

globally averaged GSTs differ most among those

products (Fig. 13), the spatial correlations decrease

slightly, with a maximum correlation (0.89) between

NOAAGlobalTemp v5 and HadCRUT4 and a mini-

mum correlation (0.70) between BEST and GISTEMP.

Over the early period of 1880–1920, the globally aver-

aged GSTs are similar (Fig. 13), but their spatial dis-

tributions differ more, with a maximum correlation of

0.76 between HadCRUT4 and BEST and a mini-

mum correlation of 0.26 between HadCRUT4 and

GISTEMP.

6. Summary

NOAAGlobalTemp v5 (Zhang et al. 2019) consists

of monthly GST on 58 3 58 grids based on SSTs in

ERSSTv5 (Huang et al. 2017) and LSAT from

GHCNm v4 (Menne et al. 2018). An important aspect

of these SST, LSAT, and GST products is their un-

certainty, which is a measure of the reliability of a

product. Uncertainties of SST and LSAT consist of

parametric («p) and reconstruction («r) uncertainties.

The uncertainty of local (or globally averaged) GST

in NOAAGlobalTemp v5 is quantified by the linear

(or squared) summation of the uncertainties of SST

and LSAT weighted by the ratio of land (29%) and

ocean (71%) surface area over the globe [Eqs. (8)

and (9)].

The term «p represents the sensitivity of an analysis

to its internal parameters; «p is quantified by 1s standard

deviation of SST or LSAT among a multimember en-

semble. The multimember ensemble is created by

perturbing the values of internal parameters. There

are 28 and 6 internal parameters in SST and LSAT

reconstruction systems, respectively. The number of

parameters in ERSSTv5 (28) is more than that in

LSAT (6) because the parameters GHCNm v4 already

include other parameters such as observation homog-

enization, biases, and random errors in 100-member

GHCNm datasets (Menne et al. 2018). A total of 1000

members of SST, LSAT, and GST are generated

to extensively explore the uncertainty space of the

parameters.

The term «r represents the residual that cannot be

resolved by a limited number of statistical modes in an

analysis, even if observations are perfect and spatially

complete. The maximum number of modes is 140 for

SST and 65 for LSAT; «r is estimated by 1s standard

deviation of the difference between reconstructed and

original pseudo-observations from model simulations

or independent analyses of observations. A total of

1000 members of SST and LSAT are generated to ex-

tensively explore the uncertainty space. The most im-

portant features of the uncertainty inNOAAGlobalTemp

v5 are the following:

1) Uncertainties of globally averaged SST, LSAT, and

GST (0.028–0.188C; Fig. 10b) are much smaller than

those at local grid scale (0.48–0.98C; Fig. 10a),

because the errors in SST, LSAT, and GST analyses

cancel when averaged globally.

2) Uncertainties at local grid scale are larger over the

land (0.78–0.98C) than over the oceans (0.38–0.58C),
consistent with the larger variability in LSAT than in

SST. Similarly, the uncertainty at global scale is

larger over the land (0.058–0.188C) than over the

oceans (0.028–0.108C). The uncertainty of GST is

close to that of SST because the ocean area is more

than 2 times larger than the land area.

3) Uncertainties of SST, LSAT, and GST are large

(0.48–0.98C at local grid scale and 0.058–0.188C at

global scale) in the earlier periods generally de-

crease with time (except during the twoworld wars),

and are smallest in the modern era (0.48–0.78C at

local grid scale and 0.028–0.068C at global scale).

These features clearly indicate that the decreasing

uncertainty with time is directly associated with

the increasing numbers and spatial coverage of

both SST and LSAT observations (e.g., Huang et al.

2017; Menne et al. 2018).

4) The values of «p and «r of SST are large in the areas

of the Kuroshio, the Gulf Stream, the eastern

equatorial Pacific and Atlantic, and the Southern

Ocean where observations are sparse and/or SST

variability is large. At the local grid scale, «p is

dominant over «r before the 1910s. In contrast, «r
is dominant over «p after the 1950s. Between the

1910s and 1950s «p and «r are comparable. At

the global scale, «p is dominant over «r through

the entire period until the 2010s, when both are

very small.

5) The value of «p of LSAT is large in northern North

America, South America near the equator, northern

Africa (08–308N), and northeastern Asia; «r of LSAT

is large in Greenland and Antarctica. At the local

grid scale, «p is larger than «r before the 1940s,

comparable over the 1940s to 1980s, and smaller after

the 1990s. At the global scale, «p is dominant over «r
throughout the entire period.

6) Comparisons indicate that uncertainties of

NOAAGlobalTemp v5 are very close to those

independently assessed in HadCRUT4, BEST,
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and GISTEMP at both the local grid and the

global scale.

Globally and ensemble averaged GST and its un-

certainty in NOAAGlobalTemp v5 are compared

against those in HadCRUT4, BEST, and GISTEMP.

Comparisons show that the GSTs are consistent

over the 1880s to 1900s and the 1970s to 2010s. In

contrast, GST is slightly warmer in HadCRUT4 than in

NOAAGlobalTemp v5 over the 1900s to 1940s and the

1940s to 1970s, which is mostly attributed to the higher

SST in HadSST3 than in ERSSTv5 (Huang et al. 2017).

Overall, the difference of GSTs is small between

NOAAGlobalTemp v5 and GISTEMP, since the same

SSTs from ERSSTv5 are used. Similarly, the GST dif-

ference is small between HadCRUT4 and BEST be-

cause the same SSTs fromHadSST3 are used. However,

these differences are within the uncertainty ranges at

the 95% confidence level, indicating overall consistency

among NOAAGlobalTemp v5, HadCRUT4, BEST,

and GISTEMP.

All products (NOAAGlobalTemp v5, HadCRUT4,

BEST, and GISTEMP) show that the warming over

the global surface is stronger in the recent decades than

in the past 50–100 years as described in many other studies

(e.g., Karl et al. 2015). The difference is that the warming

trends in the recent decade in NOAAGlobalTemp v5

are slightly higher than those in HadCRUT4 and BEST,

but slightly lower than that in GISTEMP at various

time scales.

In conclusion, the global surface temperature and its

uncertainty in NOAAGlobalTemp are consistent with

other studies. The warming trend of the global surface

temperature is persistent over time and stronger in the

recent decades.
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APPENDIX A

ERSSTv5 Internal Parameters and Their Options

The number of internal parameters increases from 24

in ERSSTv4 (Huang et al. 2015, 2016) to 28 in ERSSTv5

(Huang et al. 2017). The parameters in ERSSTv5 are

assigned 2 to 7 optional values (Table 2). The ‘‘best’’

combination of these options is selected and used in the

operational ERSSTv5 production. The other alterna-

tive options are used for parametric uncertainty esti-

mation. The details of these parameters and their

options in ERSST (v3b, v4, and v5) are described as

follows:

a. First guess (FG) used for quality control (QC)

The deviation of observations from FG is assessed

to ensure that outlier observations are not included in

the analysis. The adjusted SSTs are used as an FG in

ERSSTv3b (Smith et al. 2008) and ERSSTv4 (Huang

et al. 2016), but the unadjusted SSTs are used in

ERSSTv5 (Huang et al. 2017). Since raw observations

are not bias adjusted, the use of unadjusted SST in QC is

better to filter out true outliers (Huang et al. 2017). The

unadjusted and adjusted SSTs from ERSSTv4 are used

to assess the contribution of FG to the uncertainty of

ERSSTv5.

b. SST standard deviation (STD) used for QC

The observed raw SSTs may be discarded in QC pro-

cedure, if they deviate from FG by more than 4.5 times

the SST STD. Two sets of SST STDs are used. One is

derived from COADS observations from 1950 to 1979

(Woodruff et al. 1998) and applied in ERSSTv3b. The

other is frommonthly OISST from 1982–2011 (Reynolds

et al. 2002) and applied in ERSSTv4 and ERSSTv5. Since

SST STD is smaller inOISST than inCOADS, fewer SST

raw observations may be included when the STD from

OISST is applied. The factor of 4.5 is termed the STD

multiplier and may vary as described in parameter 5.

c. Minimum SST STD

To maintain a good QC procedure, a minimum STD

(1.08C) is set in ERSST, and its alternative options are

0.58 and 1.58C.
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d. Maximum SST STD

Similar to the minimum SST STD, a maximum STD

(4.58C) is set in ERSST, and its alternative options are

3.58 and 5.58C.

e. SST STD multiplier

The multiplier to STD in QC procedure is set to 4.5

in ERSST, and its alternative options are 3.5 and 5.5.

A larger (smaller) value of maximum (minimum) STD

and a larger STD multiplier enables ERSST system to

include more (fewer) extreme raw SST observations

into subsequent SST processing.

f. Random error of SST observations

The random error of SST observations is added to a

single ship, buoy, or Argo measurement in the uncer-

tainty estimation of ERSSTv4 (Huang et al. 2016) and

ERSSTv5, while it is not added in ERSST operational

production. The mean of the random error is set to 08C,
and the STD of the random error is set to the magnitude

of random errors for ships, buoys, and Argo floats as

explained in the next subsection.

g. Ship, buoy, and Argo SST errors

Random errors of ship and buoy observations are dif-

ferent, which are approximately 1.38 and 0.58C (Reynolds

et al. 2002; Kent and Challenor 2006; Huang et al. 2017),

respectively. The random error of Argo observation is set

to be the same as that of buoy observation due to the

same type of temperature sensor in buoys andArgo floats

(Huang et al. 2017). These empirically derived errors are

somewhat uncertain when they are taken into account in

weighting EOTs [refer to Eq. (3) in Huang et al. (2015)].

Therefore their values are perturbed by 0.18Caccordingly

as their alternative options.

h. SSTA calculation

In an earlier version ERSSTv3b, bin averaged SSTs

were calculated first on a regular 28 3 28 grid, and then

SSTAs were calculated as the differences between

SST and its climatological mean over 1971–2000. In

ERSSTv4 and ERSSTv5, the SSTAs at in situ locations

are first calculated between SSTs and SST climatolog-

ical mean at these locations, and then SSTAs are bin-

averaged to a 28 3 28 grid. The order of operations can

have an impact as indicated in Huang et al. (2015).

These two options of SSTA methods are used for

parametric uncertainty estimation.

i. NMAT for ship SST bias adjustment

In ERSSTv3b and ERSSTv4, the nighttime marine

temperature (NMAT) is used to calculate ship SST

biases (Huang et al. 2015). In ERSSTv3b, an earlier

version of the UKMONMAT is used, while HadNMAT2

(Rayner et al. 2003) is used in ERSSTv4 and ERSSTv5.

SST biases are calculated by fitting the biases to a global

climatological difference between SST and NMAT.

However, tests showed SST biases may change if they

are fitted to regional climatological modes, say a 258 3
258 running domain (Kent et al. 2017). Therefore,

bias uncertainty is taken into account by including

options of using different NMATs and fitting area.

In the uncertainty estimation of ERSSTv4, the fit-

ting within different latitudinal belts is assigned as

an additional source of uncertainty, which is not con-

sidered in ERSSTv5 due to potentially a large me-

ridional gradient near the boundary between two

latitudinal belts.

j. Ship SST bias smoothing

To reduce the impacts of noise at short time scales, a

low-frequency filter (lowess filter of coefficient f5 0.10;

equivalent to 16-yr low-pass filter; Cleveland 1981)

is applied to the fitting coefficient of ship SST biases

in ERSST [see details in Huang et al. (2015)]. In

pursuing a full bias uncertainty, additional options

of linear fitting and annually averaged filtering are

also considered. Alternative filters of f 5 0.05 and

0.15 are included in ERSSTv4 uncertainty, but not

included in ERSSTv5 uncertainty due to their simi-

larity to that of f5 0.10. Instead, a combined filter of

linear–lowess is incorporated into ERSSTv5 (Huang

et al. 2017).

k. Ship SST bias readjustment

The biases of ship SSTs over 1854–2016 are initially

calculated using NMAT as a reference (Huang et al.

2015). The biases of ship SSTs are also assessed by

more accurate buoy SSTs over 1980–2015 (Huang

et al. 2017). It was found that there is a systematic

offset of 0.0778C between the biases relative to

NMAT and buoy SST over 1990–2010. Therefore,

the bias relative to NMAT was readjusted by the

offset so that it is consistent with the one derived

from the buoy SST over 1985–2015. The offset of

0.0628, 0.0778, and 0.0928C are used in ERSSTv5

uncertainty estimation.

l. Argo SST adjustment

The SSTs from buoys and Argo floats are generally

consistent. Their averaged difference between 1990 and

2010 is approximately 0.038C with a RMSD of 0.038C
over the global oceans (Huang et al. 2017). Therefore,

the differences of 0.08, 0.038, and 0.068 are used to assess

its contribution to ERSSTv5 uncertainty.
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m. Buoy and Argo SST weighting

An earlier study (Reynolds and Smith 1994) indicated

that the random error variance of buoy observations

is about 6.8 times smaller than that of ship observations.

Therefore buoy observations are weighted by 6.8

when they are merged with ship observations. The same

weighting is assigned to Argo observations that have

similar measurement quality to buoys and the same type

of temperature sensor (Huang et al. 2017). Alternative

weightings are set to 5.8 and 7.8. It should be noted that

parameters 15 and 16 may not be completely inde-

pendent of parameters 7–9, and therefore the uncer-

tainty derived from these parameters may slightly be

underestimated.

n. Maximum observation number

The superobs on 28 3 28 grids are calculated by av-

eraging SST observations from ships, buoys, and Argo

floats weighted by their number of observations. To

protect from the averaged superobs being overwhelmed

by a single densely observed grid box, a maximum

number of observations is set to 10 in ERSST. Its impact

on parametric uncertainty is considered by alternative

numbers of 5 and 15.

o. Minimum number of months for annual average

In constructing LF anomaly, an annual average is

calculated first. The minimum number of months with

available monthly SST data is set to 2 months to calcu-

late an annual average in ERSST. Alternative numbers

are set to 1 and 3 months.

p. Minimum ratio of superobs

In reconstructing LF anomaly, a 268 3 268 spatial

running mean filter is applied to the superobs merged

from ships, buoys, andArgo floats on 28 3 28 grids. In the
grids where the superobs are labeled as missing, the

missing value is replaced by the averaged superobs

within a 268 3 268 subdomain, if the area coverage of the

superobs within the subdomain is greater than 0.03 (five

valid superobs versus a maximum of 169 grids). In esti-

mating parametric uncertainty, alternative coverages

are set to 0.02 and 0.04. The area of 268 3 268 in the LF

filter is not perturbed, since tests showed that the

changes in LF anomaly are very slight as discussed in

Huang et al. (2016).

q. Minimum number of years for LF filter

In constructing LF component of annually averaged

SSTA, a median filter of 11–19 years is applied in

ERSST. The LF component of SSTA is only valid if

the number of annually averaged SSTA is more than

two years within the LF period window. Alternative

minimum numbers of 1, 2, and 3 years are used to in-

clude its contribution to ERSSTv5 uncertainty.

r. LF filter period

In ERSST, SSTAs are decomposed into LF and

HF components. The LF component is constructed by

applying a median 15-yr filter to annually averaged

SSTAs. The LF period is perturbed among 11, 15, and

19 years to include its potential contribution to SST

uncertainty. The reason to define the LF component in

ERSST reconstruction is to reasonably retrieve the in-

terannual variations (HF) so that they can be recon-

structed by EOT modes. Therefore a 15-yr period has

been used in ERSST reconstruction. The LF period can

be perturbed but its low bound should be longer than a

decade. Therefore 11 years is selected as its low bound,

and 19 years is selected as its high bound to make

15 years in the middle of the low and high bounds.

s. HF filter period

In ERSST, the HF component of SSTA is filtered

using a 3-month running filter to account for missing

superobs. An alternative option without the filter (i.e.,

1-month filter only) is added to quantify its impact on

SST uncertainty. The reason to use a 3-month filter is to

take advantage of large heat capacity of water and

therefore a high lag-1 autocorrelation of SST (approxi-

mately 0.77 in the global ocean). Therefore, we may

reasonably interpolate (average) the current month SST

when it is missing using SSTs in the previous and next

months. Strictly speaking, the interpolated superobs are

not actual superobs, and therefore a 1-month filter is

used to keep the superobs in 28 3 28 grids as is.

t. EOTs

In ERSST, HF SSTAs are decomposed with EOTs to

filter out high-order noise. EOTs were calculated using

monthly OISST derived from weekly OISST v2 from

1982 and 2005 in ERSSTv3b, but from 1982 to 2011 in

ERSSTv4 and ERSSTv5. The maximum number of

EOTs is 130 in ERSSTv3b and 140 in ERSSTv4 and

ERSSTv5. As shown by Huang et al. (2015), the selec-

tion of EOT training periods leads to a slightly different

SSTA reconstruction, particularly in the tropical

oceans. Therefore, several groups of EOTs are de-

rived: 1) EOTs from three alternative training pe-

riods (1982–2005, 1988–2011, 1982–2011) and 2)

EOTs from even-year data (1982, 1984, . . . , 2012)

and odd-year data (1983, 1984, . . ., 2013).

The EOTs in ERSST are localized empirical orthog-

onal functions (EOFs) by damping the modes to zero

4000 (3000) km in longitude (latitude) away from the
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center of a mode. Damping scales of 5000, 4000, and

3000km in longitude, and 4000, 3000, and 2000 km in

latitude are used to explore the effects of domain trun-

cation in EOTs.

u. EOT weighting

In fittingHF SSTAs, anEOTmode is weighted by grid

box area in ERSSTv3b. Additional weighting of obser-

vation number and its associated error is considered in

ERSSTv4 and ERSSTv5 (Huang et al. 2015). Therefore,

these two weighting options are used in parametric

uncertainty estimation.

v. EOT acceptance value

Not all 140 EOT modes are actually accepted to re-

construct HF component of SSTAs. An EOT mode is

accepted if EOT acceptance value (Huang et al. 2015)

is higher than a certain criterion. The EOT accep-

tance value assesses whether a particular EOT mode

is supported by observations or is potentially an arti-

fact. Huang et al. (2015) showed that the acceptance

value is sensitive in determining the resulting SSTA

reconstruction. The acceptance value is set to 0.2 in

ERSSTv3b and is set to 0.1 in ERSSTv4 and ERSSTv5.

Three alternative options of 0.05, 0.1, and 0.2 are set for

parametric uncertainty estimation.

w. Ice concentration factor

The ice concentration from HadISST2 (1870–2015;

Titchner and Rayner 2014) is used in ERSSTv5, which

is close to HadISST1 ice (Rayner et al. 2003) in the

Northern Hemisphere and 5%–10% higher in the

Southern Hemisphere (Huang et al. 2017). The differ-

ence between these two versions of ice concentration

data may imply a measure of uncertainty in observing

ice concentration. Therefore, ice concentration is alter-

nated by multiplying a factor of 0.9, 1.0, and 1.1.

x. Minimum/maximum ice for SST adjustment

In ERSST, the combined SST from LF and HF com-

ponents is adjusted in the ice-covered area when the ice

concentration falls between a minimum and maximum

of 0.6 and 0.9, respectively (Reynolds et al. 2002; Smith

et al. 2008). These minimum and maximum values are

perturbed by 0.1 as their alternative options.

APPENDIX B

LSAT Internal Parameters and Their Options

There are five explicit parameters in reconstructing

LSAT over the global land surface (Table 3). Other

parameters such as observation homogenization, biases,

and random errors are included implicitly in 100-member

GHCNm v4 datasets (Menne et al. 2018). Explicit pa-

rameters in LSAT are assigned by 3 to 7 optional values

(Table 3). These parameters and GHCNm options are

used for parametric uncertainty estimation. The details

of these parameters and their options in LSAT are de-

scribed as follows.

a. GHCNm data

The 100-member ensemble of GHCNm (Menne

et al. 2018) is randomly selected as an internal pa-

rameter to assess the parametric uncertainty of LSAT

reconstruction.

b. Minimum number of months for annual average

In constructing LF anomaly, an annual average is

calculated with a minimum number of months of avail-

able monthly LSAT. The minimum number is set to

2 months with an alternative numbers of 1 and 3months.

c. LF filter periods

In LSAT reconstruction, anomalies are decomposed

into LF and HF components. The LF component is

constructed by applying a median 15-yr filter to annually

averaged LSAT anomalies. LF periods are perturbed

among 11, 15, and 19 years to include the potential

contribution to LSAT uncertainty.

d. Minimum number of years for the LF filter

In constructing the LF component of annually aver-

aged LSAT anomalies, a median filter of 11–19 years is

applied. The LF component of LSAT is only valid if the

number of annually averaged LSAT anomalies is more

than two years within the LF period. Alternative min-

imum number of years of 1, 2, and 3 are used to include

its contribution to LSAT uncertainty.

e. EOT training periods and spatial scales

In reconstructing LSAT, HF LSAT anomalies are

decomposed with EOTs to filter out small-scale noise.

EOTs were calculated using monthly ERA-40 from

1971 and 2000 in ERSSTv3b, but using monthly ERA-

Interim from 1982 to 2011. The maximum number of

EOTs is 65. Several groups of EOTs are derived and

randomly selected to assess the parametric uncertainty

of LSAT: 1) EOTs from three alternative training pe-

riods (1982–2005, 1988–2011, 1982–2011) and 2) EOTs

from even-year data (1982, 1984, . . . , 2012) and odd-

year data (1983, 1984, . . ., 2013).

The EOTs in reconstructing LSAT are localized

EOFs by damping the modes to zero 4000 (2000) km in

longitude (latitude) away from the center of a mode.

Damping scales of 5000, 4000, and 3000 km in longitude,
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and 3000, 2000, and 1000km in latitude are used to ex-

plore the effects of domain truncation in EOTs.

f. EOT acceptance value

Not all 65 EOT modes are actually accepted to re-

construct the HF component of LSAT anomalies. The

acceptance value (refer to parameter 25 in appendix A)

to select an EOT is set to 0.2. Three alternative options

of 0.15, 0.20, and 0.25 are set for parametric uncertainty

estimation.
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